Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Commun ; 14(1): 2527, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2314287

ABSTRACT

The Spike glycoprotein of SARS-CoV-2 mediates viral entry into the host cell via the interaction between its receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2). Spike RBD has been reported to adopt two primary conformations, a closed conformation in which the binding site is shielded and unable to interact with ACE2, and an open conformation that is capable of binding ACE2. Many structural studies have probed the conformational space of the homotrimeric Spike from SARS-CoV-2. However, how sample buffer conditions used during structural determination influence the Spike conformation is currently unclear. Here, we systematically explored the impact of commonly used detergents on the conformational space of Spike. We show that in the presence of detergent, the Spike glycoprotein predominantly occupies a closed conformational state during cryo-EM structural determination. However, in the absence of detergent, such conformational compaction was neither observed by cryo-EM, nor by single-molecule FRET designed to visualize the movement of RBD in solution in real-time. Our results highlight the highly sensitive nature of the Spike conformational space to buffer composition during cryo-EM structural determination, and emphasize the importance of orthogonal biophysical approaches to validate the structural models obtained.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Detergents/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cryoelectron Microscopy , Protein Binding , Glycoproteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism
3.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: covidwho-2064378

ABSTRACT

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Convalescence , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Measles-Mumps-Rubella Vaccine , Neutralization Tests , SARS-CoV-2
4.
Science ; 376(6599): 1327-1332, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1861568

ABSTRACT

Repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased fitness underscores the value of rapid detection and characterization of new lineages. We have developed PyR0, a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many nonspike mutations within the nucleocapsid and nonstructural proteins. PyR0 forecasts growth of new lineages from their mutational profile, ranks the fitness of lineages as new sequences become available, and prioritizes mutations of biological and public health concern for functional characterization.


Subject(s)
COVID-19 , Genetic Fitness , SARS-CoV-2 , Bayes Theorem , COVID-19/virology , Genome, Viral , Humans , Mutation , Regression Analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Elife ; 112022 03 24.
Article in English | MEDLINE | ID: covidwho-1761116

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells through binding to angiotensin-converting enzyme 2 (ACE2). This interaction is mediated by the receptor-binding domain (RBD) of the viral spike (S) glycoprotein. Structural and dynamic data have shown that S can adopt multiple conformations, which controls the exposure of the ACE2-binding site in the RBD. Here, using single-molecule Förster resonance energy transfer (smFRET) imaging, we report the effects of ACE2 and antibody binding on the conformational dynamics of S from the Wuhan-1 strain and in the presence of the D614G mutation. We find that D614G modulates the energetics of the RBD position in a manner similar to ACE2 binding. We also find that antibodies that target diverse epitopes, including those distal to the RBD, stabilize the RBD in a position competent for ACE2 binding. Parallel solution-based binding experiments using fluorescence correlation spectroscopy (FCS) indicate antibody-mediated enhancement of ACE2 binding. These findings inform on novel strategies for therapeutic antibody cocktails.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , COVID-19 , Humans , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
6.
Elife ; 112022 03 11.
Article in English | MEDLINE | ID: covidwho-1742931

ABSTRACT

Background: Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. Methods: Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n = 40), treated for COVID-19 as outpatients (n = 51), and in uninfected controls (n = 86), as well as in children with COVID-19 (n = 19), recovering from COVID-19 (n = 14), MIS-C (n = 11), recovering from MIS-C (n = 7), and pediatric controls (n = 17). Results: This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls. Conclusions: These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males. Funding: This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183.


Subject(s)
COVID-19 , Lymphopenia , Amphiregulin , COVID-19/complications , Child , Female , Humans , Immunity, Innate , Inflammation , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , T-Lymphocyte Subsets
7.
J Infect Dis ; 225(7): 1115-1117, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1704419
8.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: covidwho-1388436

ABSTRACT

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Boston/epidemiology , COVID-19/transmission , Disease Outbreaks , Epidemiological Monitoring , Humans
9.
10.
Viruses ; 13(7)2021 06 30.
Article in English | MEDLINE | ID: covidwho-1287278

ABSTRACT

Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three structurally unrelated proteins encoded by diverse retroviruses, human immunodeficiency virus type 1 (HIV-1) Nef, equine infectious anemia virus (EIAV) S2, and ecotropic murine leukemia virus (MLV) GlycoGag, disrupt SERINC5 antiviral activity by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., vesicular stomatitis virus glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and Mason-Pfizer monkey virus (M-PMV) virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. SERINC5 restricted virions pseudotyped with glycoproteins from several retroviruses, an orthomyxovirus, a rhabdovirus, a paramyxovirus, and an arenavirus. Infectivity of particles pseudotyped with HIV-1, amphotropic-MLV (A-MLV), or influenza A virus (IAV) glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. In contrast, particles pseudotyped with glycoproteins from M-PMV, parainfluenza virus 5 (PIV5), or rabies virus (RABV) were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 did not correlate with reduced SERINC5 incorporation into particles, route of viral entry, or absolute infectivity of the pseudotyped virions. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5.


Subject(s)
Host-Pathogen Interactions , Membrane Proteins/genetics , Viral Envelope Proteins , Virion/metabolism , Viruses/metabolism , HEK293 Cells , HIV-1/metabolism , Humans , Leukemia Virus, Murine/metabolism , Membrane Proteins/immunology , Retroviridae/classification , Retroviridae/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Virion/genetics , Virus Internalization , Viruses/chemistry , Viruses/classification , Viruses/genetics
12.
Virus Res ; 292: 198246, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-974719

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-COV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally bioavailable compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS-COV-2 replication (EC50 range, 2.0-31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17 F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Carbazoles/pharmacology , Cytokines/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Cytokine Release Syndrome/drug therapy , Cytokines/immunology , Dihydroorotate Dehydrogenase , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/virology , Vero Cells , COVID-19 Drug Treatment
13.
bioRxiv ; 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-637849

ABSTRACT

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and cells rendered permissive by ectopic expression of various mammalian ACE2 orthologs. Nonetheless, D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts a critical interprotomer contact and that this dramatically shifts the S protein trimer conformation toward an ACE2-binding and fusion-competent state. Consistent with the more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated. These results indicate that D614G adopts conformations that make virion membrane fusion with the target cell membrane more probable but that D614G retains susceptibility to therapies that disrupt interaction of the SARS-CoV-2 S protein with the ACE2 receptor.

14.
Cell ; 183(3): 739-751.e8, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-758650

ABSTRACT

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts an interprotomer contact and that the conformation is shifted toward an ACE2 binding-competent state, which is modeled to be on pathway for virion membrane fusion with target cells. Consistent with this more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated.


Subject(s)
Betacoronavirus/physiology , Betacoronavirus/ultrastructure , Spike Glycoprotein, Coronavirus/physiology , Spike Glycoprotein, Coronavirus/ultrastructure , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cells, Cultured , Coronavirus Infections/virology , Female , Genetic Variation , HEK293 Cells , Humans , Male , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Conformation , Protein Processing, Post-Translational , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Species Specificity
15.
bioRxiv ; 2020 Aug 05.
Article in English | MEDLINE | ID: covidwho-721075

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC 50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL